
Localized modes in one-dimensional nonlinear periodic photonic structures

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 275221

(http://iopscience.iop.org/0953-8984/20/27/275221)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 13:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/27
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 275221 (5pp) doi:10.1088/0953-8984/20/27/275221

Localized modes in one-dimensional
nonlinear periodic photonic structures
V M Apalkov

Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA

Received 20 March 2008
Published 4 June 2008
Online at stacks.iop.org/JPhysCM/20/275221

Abstract
We study the generation of localized second-harmonic modes in a one-dimensional photonic
crystal with a defect in the form of a phase slip. Due to the presence of the defect the photonic
crystal has localized in-gap modes. We consider the case when the fundamental mode is
localized in the first bandgap and because of its nonlinear properties it generates a localized
second-harmonic mode. As a function of the parameters of the photonic crystal and the defect
the intensity of the second-harmonic mode has sharp maxima, which correspond to the
resonance condition, i.e. the frequency of the second-harmonic mode is equal to the frequency
of the localized mode in the second bandgap. We find the conditions when such resonance can
be achieved. We also determine the optimal parameters of the photonic crystal at which the
generation of the second-harmonic mode becomes less sensitive to violation of the
resonance condition.

1. Introduction

One of the applications of photonic crystals, i.e. periodic
modulation of the dielectric constant, is related to the
localization of light in the presence of defects within the
bandgaps of the photonic crystal [1, 2]. In this case the
localized modes of the photonic crystal become resonators
with high quality factors [3]. Another important application
of photonic crystals is related to the enhancement of nonlinear
effects in periodic structures [4]. This enhancement gives
the possibility of tailoring the photon dispersion relation in
photonic crystals. This can result, for example, in the
realization of a quasi-phase-matching condition for second-
harmonic generation in photonic crystals [5–9]. Under quasi-
phase-matching conditions a high-intensity second-harmonic
mode can be generated in periodic photonic structures.
Another method to enhance the generation of the second-
harmonic mode is to incorporate the nonlinear media in a
resonant cavity [10–14]. If the cavity has double resonance
properties, i.e. both the fundamental mode and the second-
harmonic mode are resonant modes of the cavity, then the
fundamental mode, propagating through the cavity, generates
the high-intensity second-harmonic mode [10–14].

In the present paper we combine both properties of
photonic crystals, i.e. localization and the enhancement of
nonlinear effects. We study the localized modes of a nonlinear
one-dimensional (1D) photonic crystal. In a 1D photonic
crystal there are complete bandgaps for light propagating in the

direction of periodicity. In this case any defect will produce
localized modes within the gaps of the 1D photonic crystal.
The radius of localization and the frequency of the localized
mode depend on the strength of the defect. Below we assume
that the defect is a phase slip [15, 16], i.e. an interruption of
periodicity. If the light at fundamental frequency is localized,
then due to the nonlinear properties of the crystal it will
generate the second-harmonic mode. If the second-harmonic
mode is within the bandgap of the photonic crystal then it
will be also localized. Below we study the intensity of the
generated second-harmonic mode and analyze the conditions
under which we have the largest conversion efficiency. The
analysis has only been done for a weakly modulated photonic
crystal.

2. System of equations

We consider a 1D photonic crystal or periodic modulation
of the dielectric constant of the background material in one
direction only. We assume that this direction is the x direction
and the light is propagating along the same x direction. In
this case both the light at the fundamental frequency and the
light at the double frequency are polarized in the yz plane.
Such a system can be considered as a multi-layer system
with the interface of the layers parallel to the yz plane. The
propagation of light in the x direction is described by nonlinear
wave equations, which in Gaussian units take the following
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form [17]:

d2

dx2
E1(x)+ ε ′(x)

ω2

c2
E1(x) = −χ(x)8πω2

c2
E∗

1 E2, (1)

d2

dx2
E2(x)+ 4ε ′′(x)

ω2

c2
E2(x) = −χ(x)16πω2

c2
E2

1 , (2)

where E1(x) is an electric field at fundamental frequency ω,
E2(x) is an electric field at the second-harmonic frequency,
ε ′(x) = ε(ω, x) and ε ′′(x) = ε(2ω, x) are dielectric constants
at the fundamental and the second-harmonic frequencies,
respectively, and χ is a nonlinear optical coefficient. In
the above equations we introduce small periodic modulations
of both the dielectric constant and the nonlinear coefficient.
Namely, we present them in the form

ε(ω, x) = ε0(ω)+
∑

n

[δεn(ω)e
2ink0 x + h.c.], (3)

χ(x) = χ0 +
∑

n

[δχne2ink0 x + h.c.]. (4)

We assume below that we have a weak periodic modulation of
the dielectric medium, i.e. δεn � ε0. In the absence of a defect
the periodic modulation will open 1D gaps ∼nck0δεn/(2ε0)

at wavelength nk0, where n is an integer. Since below
we are interested only in the in-gap localized modes at the
fundamental and second-harmonic frequencies, we keep in
equation (3) only those terms with n = 1 for the fundamental
mode and n = 2 for the second-harmonic mode. Then the
dielectric constants at the fundamental and second-harmonic
frequencies can be presented as

ε ′(x) = ε ′
0 + δε1e2ik0 x + h.c., (5)

ε ′′(x) = ε ′′
0 + δε2e4ik0 x + h.c. (6)

Only the periodic terms shown in equations (5) and (6) are
responsible for the gap formation around the fundamental
and second-harmonic frequencies. The other terms, which
are present in the general expression (3) for the dielectric
constant, provide only small corrections to the gaps around
these frequencies. As a next step we introduce a defect in the
form of a phase slip at x = 0. This means that the photonic
crystal is shifted by +d at x > 0 and by −d at x < 0, where
d < a/2. In terms of modulations of the dielectric constants
we have the phase shift at x = 0

ε ′(x) = ε ′
0 + δε1e2ik0 x e±iφ + h.c., (7)

ε ′′(x) = ε ′′
0 + δε2e4ik0 x e±2iφ + h.c., (8)

where ‘+’ and ‘−’ signs correspond to x > 0 and x < 0,
respectively, and φ = 2k0d = 2πd/λ.

The presence of the phase slip introduces localized
modes within the gaps of the photonic crystal. Below we
assume that the light at fundamental frequency is localized
within the first bandgap of the photonic crystal. Due to
the nonlinear properties of the media of the photonic crystal
we expect that the fundamental localized mode will generate
second-harmonic localized light. The equations describing
the coupling between the fundamental and second-harmonic

localized modes can be found from the system of equations (1)
and (2). Then for the envelopes of the localized modes we
obtain the following equations [18]

−ik0
dA1

dx
− V1e±iφB1 = 	1 A1 − α1 A∗

1 A2, (9)

ik0
dB1

dx
− V1e∓iφ A1 = 	1 B1 − α1 B∗

1 B2, (10)

−i2k0
dA2

dx
− V2e±2iφB2 = 	2 A2 − α2 A2

1, (11)

i2k0
dB2

dx
− V2e∓2iφ A2 = 	2 B2 − α2 B2

1 , (12)

where the upper and the lower signs correspond to x > 0 and
x < 0, respectively. Here the envelope functions are defined as

E1(x) = A1(x)e
ik0 x + B1(x)e

−ik0 x (13)

E2(x) = A2(x)e
i2k0 x + B2(x)e

−i2k0 x, (14)

and we introduce the following notation:

V1 = δε1(ω/c)
2, V2 = 4δε2(ω/c)

2, (15)

	1 = k2
0 − ε ′

0(ω/c)
2, 	2 = 4k2

0 − 4ε ′′
0 (ω/c)

2, (16)

α1 = 8πχ0(ω/c)
2, α2 = 16πχ0(ω/c)

2. (17)

In the system of equations (9)–(12) we also assumed that
the nonlinearity is included only through the zero-harmonic
term, χ0, i.e. we disregard periodic modulations of the
nonlinear coefficient. Equations (9)–(12) were derived under
the condition that the frequency width of the envelope function
is much larger than the corresponding wavelength. For the
fundamental mode the width of the envelope function can be
estimated as k0/V1. Then the derivation of equations (9)–(12)
is valid if k2

0 � V1 or δε1 � ε0. This is the condition of weak
periodic modulation of the medium.

The meaning of different parameters in equations (9)–(12)
is illustrated in figure 1. The positions of the center of the
first and the second bandgaps are determined by the conditions
k2

0 = ε ′
0(ω/c)

2 (the first bandgap) and 4k2
0 = ε ′′

0 (ω/c)
2

(the second bandgap). In terms of the variables ε(ω/c)2 the
widths of the first and second bandgaps are 2V1 and 2V2,
respectively. The position of the localized fundamental mode
is characterized by the distance,	1, from the center of the first
bandgap. The localization of this mode is due to the presence
of the phase slip. Therefore 	1 depends on the parameters
of the defect. The frequency of the fundamental mode, i.e. 	1,
determines the position of the second-harmonic mode, which is
characterized by the distance 	2 from the center of the second
bandgap. If the generated second-harmonic mode is outside
the second bandgap, i.e. |	2| > V2, then the second-harmonic
mode can freely propagate through the media and the mode is
not localized. If the generated second-harmonic mode is within
the second bandgap, i.e. |	2| < V2, then the second-harmonic
mode is localized, i.e. it cannot propagate through the photonic
crystal. The relation between 	2 and V2 is determined by
the parameters of the medium. Below we consider only the
most interesting case, when both the fundamental mode and
the second harmonic mode are localized, i.e. |	2| < V2.
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Figure 1. Schematic illustration of the band structure of a
one-dimensional photonic crystal with weak modulation of the
dielectric constant shown in the plane ε(ω/c)2–k. The values of V1

and V2 determine the width of the first and the second bandgaps. The
fundamental mode, localized in the first bandgap due to the presence
of the phase slip, is shown by a star. The position of the generated
second-harmonic mode is characterized by the distance 	2 from the
center of the second bandgap, ε(ω/c)2 = 4k2

0 . If 	2 < V2 then the
second-harmonic mode is localized in the second bandgap, otherwise
it is delocalized.

3. Generation of the second-harmonic mode

Without nonlinear terms in equations (9) and (10) the localized
fundamental mode has the form

A1 = B1 = (2γ1 I1)
1/2 exp(−γ1|x |), (18)

where I1 determines the total intensity of the light in the
localized mode. Here the decrement, γ1, and the ‘frequency’,
	1, of the localized mode depend on the phase shift, φ, as
follows:

γ1 = (V1/k0) sinφ, 	1 = −V1 cosφ. (19)

We study the generation of the second-harmonic mode by
the fundamental localized mode (18). We disregard the effects
of the second-harmonic mode on the fundamental mode, i.e. we
disregard the terms α1 A∗

1 A2 and α1 B∗
1 B2 in equations (9)

and (10), respectively (non-depleted wave approximation).
Then to find the generated second-harmonic mode we need to
solve the system of equations (11) and (12) with A1 and B1

given by equation (18). The solution has the following form:

A2(x) = α2γ1 I1eiδφ

k0(γ2 + 2γ1)

[
V2 cos(φ + ψ)

k0(2γ1 − γ2)
(e−2γ1|x| − e−γ2|x|)

− e−γ2|x|

sin(δφ)
− ie−iδφe−2γ1|x|

]
= B∗

2 (x), (20)

where we introduce the following notation

δφ = φ − ψ (21)

and

ψ = 1
2 cos−1 (−	2/V2) , γ2 = V2

2k0
sin(2ψ), (22)

which means that

V ei2ψ = −	2 + 2ik0γ2. (23)

Then the final solution for the second-harmonic mode, E2,
can be written as

E2(x) = α2γ1 I1

k0(γ2 + 2γ1)

[
V2 cos(φ + ψ)

k0(2γ1 − γ2)
(e−2γ1|x| − e−γ2|x|)

− e−γ2|x|

sin(δφ)

]
cos(k0x + δφ)

− α2γ1 I1

k0(γ2 + 2γ1)
e−2γ1|x| sin(k0x). (24)

The generated second-harmonic mode is localized if the
second-harmonic ‘frequency’, 	2, is within the second
bandgap of the photonic crystal, |	2| < V2, i.e. the second-
harmonic mode cannot propagate through the crystal. We
should distinguish between the generated localized mode and
the real localized mode within the second bandgap. The real
localized mode exists without the presence of the fundamental
mode and has a form similar to equation (18):

A(l)2 = B(l)
2 = (2γ (l)2 )1/2 exp(−γ (l)2 |x |). (25)

The ‘frequency’ of this localized mode is

	
(l)
2 = −V2 cos(2φ). (26)

Below we call the mode (25) the localized mode and the
mode (20) the generated localized mode. In general, the
frequency of the generated second-harmonic mode, 	2, is
not equal to the frequency of the localized mode, 	(l)

2 . The
condition that the second-harmonic mode is in resonance with
the localized mode, i.e. 	(l)

2 = 	2, can be written as φ = ψ .
As we can see from equation (24), in this case the intensity of
the second-harmonic mode goes to infinity. The reason why we
get infinity in the case of the resonance is that in the derivation
of equation (24) we disregarded the terms proportional to
γ2/k0. If we take these terms correctly then we have the cut
off at δφ ≈ γ2/k0. Finally, for small δφ we obtain

E2(x) = − α2γ1 I1

k0(γ2 + 2γ1)

e−γ2 |x|
√
δφ2 + (γ2/k0)2

cos(k0x).

Then the total intensity of the generated second-harmonic
mode is given by the following expression:

I2 =
∫ ∞

−∞
E2

2(x) dx = (α2γ1 I1)
2

2k0γ2(γ2 + 2γ1)2

1

δφ2 + (γ2/k0)2
.

The maximum value of the intensity, I2, is realized at δφ = 0
and equals

I2 =
(

α2γ1 I1

γ2[γ2 + 2γ1]
)2 (

k0

2γ2

)
. (27)

We can see that the width of the intensity maximum is
a function of the non-resonant parameter, δφ, is narrow
∼γ2/k0 � 1. At the same time the value of I2 at the maximum
is enhanced by a factor (k0/γ2)

2 � 1 compared to its value
outside of the resonance, i.e. at δφ ∼ 1.
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From equation (27) we can see another tendency in the
generation of the second-harmonic mode. Namely, to have
the largest intensity of the generated second-harmonic light we
need to have the smallest γ2. This means that the size of the
generated localized mode should be as large as possible. At
the same time the size of the fundamental mode should be
small, i.e. γ1 should be large. This means that the second-
harmonic mode is generated within the origin of the defect, so
we need to have the largest intensity of the fundamental mode
there. Then the second-harmonic mode will occupy the whole
space within its localization length. The upper limit for the
localization length of the generated second-harmonic mode is
determined by disorder and other types of the defects present
in the photonic crystal. Here, we also want to mention that the
most efficient generation of the second-harmonic mode does
not mean that the spatial sizes of the localized fundamental and
the generated second-harmonic modes should be the same.

We can also analyze the spatial distribution, I2(x) =
|E2(x)|2, of the intensity of the generated second-harmonic
mode. The maximum value of the intensity can be another
characteristic of the generated mode. We can see from
equation (24) that if γ2 
= 2γ1 then the intensity has a
maximum at x = 0 and at small δφ we have

I2,max = I2(x = 0) = α2
2γ

2
1 I 2

1

k2
0(γ2 + 2γ 2

1 )
2

(
cos(δφ)

sin(δφ)

)2

. (28)

A different situation occurs when γ2 = 2γ1. In this case
from equation (24) we obtain

E2(x) = −
[
α2 I1

4k0

]
e−γ2|x|

{[
|x | V2 cos(φ + ψ)

k0

+ 1

sin(δφ)

]
cos(k0x + δφ)+ sin(k0x)

}
, (29)

i.e. E2(x) has a term with the linear dependence on x .
Assuming that δφ is small we can find expression for the
intensity of the generated second-harmonic mode:

I2(x) =
[
α2 I1

4k0

]2

e−2γ2|x|

×
{
|x | V2 cos(φ + ψ)

k0 sin(δφ)
+ 1

sin2(δφ)

}
. (30)

The intensity has a maximum at x = x0,

x0 = 1

2γ2
− k0

2V2 cos(φ + ψ) sin(δφ)
. (31)

The value of the intensity at this point is

I2,max = α2
2 I 2

1

16k2
0

[
V2 cos(φ + ψ)

k0γ2 sin(δφ)

]
e−2γ2 x0 . (32)

The maximum at point x0 exists only if x0 > 0, which means
that δφ should not be very small, i.e. V2 sin(δφ) > γ2k0. If δφ
is small, i.e. δφ < γ2k0/V2, than the intensity maximum is at
x = 0 and is given by equation (28). Comparing equations (28)
and (32), we can say that if γ2 = 2γ1 then the dependence of
the intensity maxima of the second-harmonic mode on δφ has
the following form:

I2,max ∝
{

1/δφ if δφ > γ2k0/V2

1/(δφ)2 if δφ < γ2k0/V2.
(33)

-2

optimal
parameters

2

2-1-2

Figure 2. The dashed region illustrates a domain of parameters of the
photonic crystal for which the resonant phase slip can be realized.
The corresponding phase shift is given by equation (36). The
boundaries of the domain are determined by the lines δ2 = 1,
δ1 = 1 + δ2 and δ1 = [8δ2(1 − δ2)]1/2. The thick solid line,
δ1 = [8δ2(1 − δ2)]1/2, shows the optimal parameters of the
photonic crystal.

4. Realization of the resonance condition

The resonance condition, i.e. the condition that the frequency
of the generated second-harmonic mode is equal to the
frequency of the localized mode within the second bandgap,
can be written as ψ = φ. Then, at resonance, we can find from
equations (15), (16), and (19) the following relation:

δε2 cos(2φr)− ε ′′ = δε1 cos(φr)− ε ′, (34)

where φr is the angle corresponding to the resonance condition,
i.e. ψ = φ = φr. If we introduce ‘dimensionless’ dielectric
constants

δ1 = δε1/(ε
′
0 − ε ′′

0 ), δ2 = δε2/(ε
′
0 − ε ′′

0 ), (35)

then the solution of equation (34) can be written as

cos(φr) =
δ1 ±

√
δ2

1 − 8δ2 + 8δ2

4δ2
. (36)

Equation (36) also determines the parameters of photonic
crystal, δ1 and δ2, for which the phase slip with the resonance
condition exists, i.e. 0 < φr < π/2. The region of valid
parameters δ1 and δ2 is shown in figure 2 and is bounded by
the lines δ2 = 1, δ1 = 1 + δ2 and δ1 = [8δ2(1 − δ2)]1/2.
Therefore, for any point in the dashed region in figure 2 we
can choose the phase slip with phase shift φ = φr, given by
equation (36), so that the generated second-harmonic mode
has the same frequency as the localized mode in the second
bandgap.

Within the dashed region in figure 2 we can also find the
optimal parameters of the photonic crystal so that the system
becomes less sensitive to any inaccuracy in the design of the
phase slip. Namely, we define the optimal parameters of
photonic crystal in the following way.

4
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For any point in the dashed region in figure 2 there is a
value of the angle φr. If we assume that there is an error
in construction of the phase slip, so that φ = φr + δφ , then
this error produces the shift between the angles ψ and φ and
violates the resonance condition. To find the shift between
ψ and φ we express the angle ψ from equations (15), (16)
and (19) in terms of parameters of the photonic crystal. The
expression has the following form:

δ2 cos(2ψ) = δ1 cos(φ)− 1. (37)

Then the difference between the angles ψ and φ is

ψ − φ = (φ − φr)

[
1 − δ1

4δ2 cos(φr)

]
. (38)

The smallest value of |ψ−φ| corresponds to cos(φr) = δ1/2δ2.
Then taking into account equation (36) we obtain that the
optimal parameters of the photonic crystal are describe by

δ1 = [8δ2(1 − δ2)]1/2. (39)

This equation is shown by thick solid line in figure 2. Along
this line the angle φr is changed from 0 to π/2.

5. Conclusion

The largest convergence efficiency of the localized fundamen-
tal mode is realized only under the resonance condition. The
resonance condition means that the frequency of the second-
harmonic mode is equal to the frequency of the localized
mode in the second bandgap. The resonance condition can be
achieved only if the parameters of the photonic crystal are in
the region shown in figure 2. For each set of parameters from
this region the phase shift, which corresponds to the resonance
condition, can be found from equation (36). There are also
optimal parameters of the photonic crystal for which the gen-
eration of the second-harmonic mode becomes less sensitive to
variation of the phase shift, φ, i.e. to violation of the resonance
condition. In practice, the parameters of photonic crystals can
be modified by tailoring the unit cell structure of photonic
crystals.

The generation of the second-harmonic mode in the
structure, studied in the present paper, has already been
discussed in [19]. In [19] an expression for the intensity of the
second-harmonic mode, generated due to propagation of the
fundamental mode through a 1D periodic photonic structure
with a linear defect, has been derived on the basis of a Green
function method. The main outcome of [19] is that generation
of the second-harmonic mode is enhanced if the fundamental

mode is in the resonance with the localized mode of the defect.
What we study in the present paper is a nonlinear localized
mode of a defect in 1D photonic crystal. We show that to have
the most efficient generation of the second-harmonic mode
within the localized region we need to have a double resonance
property. This means that both the fundamental mode and the
second-harmonic mode should be eigenmodes of the defect.
We also derive the condition that the parameters of photonic
crystal should satisfy to realize the double resonance defect.
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